
SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer: Yama Finance
Date: March 08, 2023

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Yama
Finance

Approved By Noah Jelich | Lead Solidity SC Auditor at Hacken OU

Type ERC20 token; Lending Platform; Auction; Bridge

Platform EVM

Language Solidity

Methodology Link

Website https://yama.finance/

Changelog 16.02.2023 – Initial Review
08.03.2023 - Second Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://yama.finance/

Table of contents
Introduction 4

Scope 4

Severity Definitions 8

Executive Summary 9

Checked Items 11

System Overview 14

Findings 17
Critical 17

C01. Coarse-grained Authorization Model 17
High 17

H01. Undocumented Behavior; Highly Permissive Role Access 17
H02. Data Consistency 17
H03. Undocumented Behavior; Highly Permissive Role Access 18
H04. Undocumented Behavior; Highly Permissive Role Access 18
H05. Undocumented Behavior; Highly Permissive Role Access 19
H06. Token Supply Manipulation; Highly permissive role 19
H07. Non-Finalized Code; Undocumented Behavior 19

Medium 20
M01. Inefficient Gas model - Redundant interactions 20
M02. Unchecked transfer or approve 20
M03. Inefficient Gas model - Redundant interactions 21
M04. Inconsistent data - Variable is not limited 21

Low 21
L01. Floating Pragma 21
L02. Functions that can be declared external 22
L03. State variables default visibility 22
L04. State variables can be declared immutable 22
L05. Unused modifier 23
L06. Missed internal/external imports 23
L07. Redundant variable conversion 23
L08. Style Guide Violation 24

Disclaimers 25

www.hacken.io
3

Introduction

Hacken OÜ (Consultant) was contracted by Yama Finance (Customer) to conduct
a Smart Contract Code Review and Security Analysis. This report presents
the findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is review and security analysis of smart contracts
in the repository:

Initial review scope
Repository https://github.com/Yama-Finance/stablecoin-contracts

Commit 21345d1853c79f78e7519f2e196a1bea5b6e41bc

Whitepaper

Functional
Requirements

Technical
Requirements

Contracts File: ./src/interfaces/IBalanceSheetHandler.sol
SHA3:
ef9ddae0f91cbaf7fa1cc10ec9c5a258df3fc997e3373895fa5ad0e53e679013
File: ./src/interfaces/IBridgeReceiver.sol
SHA3:
14546aa45a58f7b2ca9c46f366669e6e9143a5199d5bf964201168925cd792d4
File: ./src/interfaces/ICollateralManager.sol
SHA3:
eec57035c10fb81efdde2556cf7df3e4b37573f72bed357a76b22c4b9ee920bc
File: ./src/interfaces/ILiquidator.sol
SHA3:
66768c4de5fb0bfc40d28b8c69e0dafc821efb1ae7b7db739773395bf737fc97
File: ./src/interfaces/IPriceSource.sol
SHA3:
47aec1a4f1f0425b33658faea73f73943023c6b094609aaa425e1190e1f2873e
File: ./src/ModularToken.sol
SHA3:
a74318bebe1ef3ffeb5f1af4431e82ddd7142695409de4cac9d7a3d0138c11c3
File: ./src/modules/BalanceSheetModule.sol
SHA3:
aa52aa7c02a891c5533c207f84261165fcb2afb10f964a268b1aa03a15314675
File: ./src/modules/BridgeModule.sol
SHA3:
041f0386d5a8ce5a0d3d5070322b2f8b66fb42bbb40cf9c9e027e85e21da7066
File: ./src/modules/CDPModule.sol
SHA3:
6ec57c98684f05b27db271947e6415f0b61bb3fd51b15e5b6d34dae98e725d81
File: ./src/modules/FlashMintModule.sol
SHA3:
6adad18e6ec566471812bf1667ade6b1a5e784184438e2abaaa30b5f07d7b9aa
File: ./src/modules/PegStabilityModule.sol
SHA3:
9f668b37a74538e0a67100e8a88787a367ec9109dc9c017cc9355d3ec3e95370

www.hacken.io
4

https://github.com/Yama-Finance/stablecoin-contracts

File: ./src/modules/templates/GenericModule.sol
SHA3:
a7d81eb85af30b96c6d951cde5e6b6d7e93471f71d796a95b5af5d550b19dbd9
File: ./src/modules/templates/Module.sol
SHA3:
7f3bb3f105866638250b26462178de7fa7c3a7f902802078bffc5d6b6515d621
File: ./src/modules/templates/YSSModule.sol
SHA3:
9d06c6d3fd814a42704d25a7cc2d2515f26ccfe77386da7502f4ba0b5ae25fe3
File: ./src/modules/templates/YSSModuleExtended.sol
SHA3:
3a499f2032134c973fdadc21347c3d672adab3cb8dd3a9666d250f9b9e326b11
File: ./src/periphery/DutchAuctionLiquidator.sol
SHA3:
e0ea811f041470676f3f2b42800e832d029da5ca21c1e2d331b01f4dba82ad6e
File: ./src/periphery/PSMLockup.sol
SHA3:
773ddefd01633f82314b05e16cadd271e747b7ff9e13ff3b5b1e575847151db2
File: ./src/periphery/SimpleBSH.sol
SHA3:
4af952411b3bf3574aa79c5c203f0efd817d849feb14986418585dd04ef9055f
File: ./src/utility/ISwapper.sol
SHA3:
b17f978bbd1eea759c0636e06e1973d63d2299b886a30558c16498500efbbe47
File: ./src/utility/LeverageProxy.sol
SHA3:
924cf37ef22ade3fe6e39db000330bcf9fef5f648a61c5125c26ffcb33f13adb
File: ./src/YSS.sol
SHA3:
c6e419486ca0954b171d8ca5a077fc8bb5f6365c1cac8e382fd9815f32e17275

www.hacken.io
5

Second review scope
Repository https://github.com/Yama-Finance/stablecoin-contracts

Commit 9091b8553ad4b81cd3281a1654afc0767a1a39f1

Whitepaper

Functional
Requirements

https://beamish-taffy-de2c16.netlify.app/technical-summary

Technical
Requirements

https://beamish-taffy-de2c16.netlify.app/technical-summary

https://github.com/Yama-Finance/stablecoin-contracts/blob/mai
n/README.md

Contracts File: ./src/interfaces/IBalanceSheetHandler.sol
SHA3:
8ed32d5eb4f82609ec6cac39b95cf16e82e826ee82c41453fb1cd24f437c5907

File: ./src/interfaces/IBridgeReceiver.sol
SHA3:
4dab4f82e52fd8812e826645430ba30681b61c40d08a64c49c1979ea408b7788

File: ./src/interfaces/ICollateralManager.sol
SHA3:
0e26fb5442b8ba0d440a235b587b251a3ec9815915a99d3181755f01214b2952

File: ./src/interfaces/ILiquidator.sol
SHA3:
ecce71df49bc709d3490fec76bb408517dc16869510e8c0ae8723e31200634f3

File: ./src/interfaces/IPriceSource.sol
SHA3:
f83ecd8bfc7b5697ac2d56344764adf7e7ed35b2114773fa059dd6fa00e89e72

File: ./src/ModularToken.sol
SHA3:
02eb09bd01a7676111404718d536fd3a1b0d833ab0f9e2a849a1840e10939000

File: ./src/modules/BalanceSheetModule.sol
SHA3:
723133cb20f09069eb5d48694a4b2876ef45d5c0fa69ff3d9c7df43e5eb66624

File: ./src/modules/BridgeModule.sol
SHA3:
92ae4f4d43c205d82a21b020d0bc88e2a27048c967bff7cae0c4d04f1651f0c1

File: ./src/modules/CDPModule.sol
SHA3:
9a36f88f16f5585fc375ef67ca48c8c68b60ed329e9aa54c40df7b5f2c7c5852

File: ./src/modules/FlashMintModule.sol
SHA3:
c33292fa0c48b94aa03dd62efd10156ad761aadd1f9f268dd72f121ace7c5f25

File: ./src/modules/PegStabilityModule.sol
SHA3:
8511f1696bf15d24bb827cbd64850e68f99c215e2f0fd755381b0b5ba2874fc9

File: ./src/modules/templates/GenericModule.sol

www.hacken.io
6

https://github.com/Yama-Finance/stablecoin-contracts
https://beamish-taffy-de2c16.netlify.app/technical-summary
https://github.com/Yama-Finance/stablecoin-contracts/blob/main/README.md
https://github.com/Yama-Finance/stablecoin-contracts/blob/main/README.md

SHA3:
166009541b255742347180ead4a5411a91fc2e793e0c980146827cda219cba71

File: ./src/modules/templates/Module.sol
SHA3:
e12b2a2518cc9675d51f7cb5ce591277891be9032b587904aa2b70f1a3fa051d

File: ./src/modules/templates/YSSModule.sol
SHA3:
dbcf2c25c0cb4a6c3d56229caabbdec1a9f3d24b1d5ab941d279a498b4ca7449

File: ./src/modules/templates/YSSModuleExtended.sol
SHA3:
96e04b2357387748a4f7716468673354d380afa84d1f370154a54e56dbad212c

File: ./src/periphery/DutchAuctionLiquidator.sol
SHA3:
4a7130bba5307972a7ec085ab12ff7518ff4d68d0db25ba3a148245980354837

File: ./src/periphery/PSMLockup.sol
SHA3:
eed029b17d3dcddaeba1695cb3268191f97c98c1049bfb7d2b3781d019708ab0

File: ./src/periphery/PSMPriceSource.sol
SHA3:
bb1df6bee9773fcc598be602a9c751e98cabf25bcc1cf6cf53b37b6c7750c9a5

File: ./src/periphery/SimpleBSH.sol
SHA3:
12e83370c896b77bab5460fd9a082a0f4c828e24586a1b8bfd2aff4c916b840c

File: ./src/utility/ISwapper.sol
SHA3:
57fa2e62fe86a57bb9ad832a29e2f29c45c1d9fb789583c232542b381b884c52

File: ./src/utility/LeverageProxy.sol
SHA3:
a4e1aab085ada028a58135422a3d9804cd634c1d8b59b5fedef0bec544846640

File: ./src/YSS.sol
SHA3:
412c377a42c4b105e2c5f4194c22004704ea4942dd9c0c113305f7c0bd5e73d1

www.hacken.io
7

Severity Definitions

Risk Level Description

Critical

Critical vulnerabilities are usually straightforward to
exploit and can lead to the loss of user funds or
contract state manipulation by external or internal
actors.

High

High vulnerabilities are usually harder to exploit,
requiring specific conditions, or have a more limited
scope, but can still lead to the loss of user funds or
contract state manipulation by external or internal
actors.

Medium
Medium vulnerabilities are usually limited to state
manipulations but cannot lead to asset loss. Major
deviations from best practices are also in this category.

Low

Low vulnerabilities are related to outdated and unused
code or minor gas optimization. These issues won't have a
significant impact on code execution but affect code
quality

www.hacken.io
8

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Functional requirements are provided.
● Technical description is provided.

Code quality
The total Code Quality score is 10 out of 10.

● The development environment is configured.
● Code follows Solidity guidelines.

Test coverage
Code coverage of the project is 100% (branch coverage).

● Deployment and basic user interactions are covered with tests.
● Negative cases are covered.
● Interactions with several users are tested.

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 10.0.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

16 February 2023 8 4 7 1

08 March 2023 0 0 0 0

www.hacken.io
9

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing

Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Passed

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Passed

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Passed

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
10

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128

Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Not Relevant

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155
EIP-712

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not Relevant

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation EIP EIP standards should not be violated. Passed

Assets
Integrity Custom

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

www.hacken.io
11

https://swcregistry.io/docs/SWC-114
https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://eips.ethereum.org/EIPS/eip-712
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Passed

Token Supply
Manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
customer.

Passed

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Not Relevant

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable Imports Custom
The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
12

System Overview

Yama Finance is an omnichain CDP protocol. It is a system of smart
contracts that work together to maintain the health of the Yama stablecoin.
The Yama Finance protocol is designed so that users can create a CDP, use
it to generate the stablecoin, and then use the stablecoin to purchase
goods and services, or to pay for fees. The protocol is also designed to be
extendable, so governance can build additional modules on top of it. This
allows for the protocol to be adaptable in the long-term.
The files in the scope:

● CDPModule.sol - is a contract which manages the creation and
maintenance of collateralized debt pools (CDPs, also called vaults).
Users can borrow additional funds, repay the loan, add collateral, or
remove collateral from their vaults as long as the vaults do not
become undercollateralized. The CDP module provides users with an
easy way to borrow the Yama stablecoin by using their ETH, staked
GLP, or other supported tokens as collateral. This allows users to
leverage their crypto holdings to gain access to additional
liquidity.

● BridgeModule.sol - is a contract which allows users to move funds
between different blockchains. This allows users to move funds from
one chain to another, for example Arbitrum to Fuel. This is a useful
feature for users that want to transfer funds from one chain to
another, or for users that want to take advantage of arbitrage
opportunities between different blockchains.

● DutchAuctionLiquidator.sol - is a contract that handles collateral
auctions.

● LeverageProxy.sol - opens a CDP vault on behalf of the user when
LeverageProxy.createVault() is called. It acts as a tool to automate
the process of leveraging up. Anyone can deploy their own version of
the Leverage Proxy and use it to manage their vaults.

● PSMLockup.sol - incentivizes locking up money in the PSM. Locked
tokens accrue value over time as the PSM lockup gets revenue from the
protocol.

● PegStabilityModule.sol - converts YSS to/from an external stablecoin
to stabilize the peg

● FlashMintModule.sol - allows anyone to mint YSS up to a limit with
the one condition that they pay it all back in the same transaction.
It’s used in the LeverageProxy.sol to simplify the process.

● ModularToken.sol - an ERC20 token that is the core of the protocol.
● SimpleBSH.sol - responsible for transferring the revenue to the PSM

lockup if the protocol’s total surplus is not negative.
● BalanceSheetModule.sol - is a contract which keeps track of the

protocol's deficit/surplus. Whenever a CDP is liquidated, the Balance
Sheet module will update the protocol's deficit/surplus accordingly.

www.hacken.io
13

● YSSModuleExtended.sol - an abstract contract for implementing allow
list functionality and the capacity to update BalanceSheetModule.sol
contract address for CDPModule.sol, DutchAuctionLiquidator.sol,
PSMLockup.sol and SimpleBSH.sol contracts.

● Module.sol - converts an amount between tokens with different decimal
places.

● GenericModule.sol - an abstract contract for implementing allow list
functionality for the BridgeModule.sol contract.

● YSSModule.sol - an abstract contract for implementing allow list
functionality for BalanceSheetModule.sol, FlashMintModule.sol,
PegStabilityModule.sol and LeverageProxy.sol contracts.

● ISwapper.sol - interface for swapper.
● ICollateralManager.sol - interface for CollateralManager.
● IBridgeReceiver.sol - interface for BridgeReceiver.
● YSS.sol - YSS stablecoin.
● IBalanceSheetHandler.sol - interface for the BalanceSheetHandler.sol

contract.
● ILiquidator.sol - interface for the liquidator contract.
● IPriceSource.sol - interface for the PriceSource.

Privileged roles
● General:

allowlist - An address from the allowlist of the Yama stablecoin has
the following permissions:

○ YSS.sol (ModularToken): mint, burn and approve to/from any
address and add/remove addresses to/from the allowlist

○ CDPModule.sol: sets the liquidators for this module,
enable/disable borrowing, sets an allowed borrower for a vault,
to set the collateral manager, add/update a collateral type,
transfer any token from the CDPModule.sol contract and can
update the BalanceSheet contract for the CDPModule.sol.

○ BalanceSheetModule.sol: can set the handler and protocol
surplus, can add protocol surplus, protocol deficit.

○ BridgeModule.sol: can set the decimals of another chain, the
address of a bridge contract on another chain, an alternate
remote bridge address to accept messages from and change/update
hyperlane parameters

○ FlashMintModule.sol: can set the maximum flash loan amount
○ PegStabilityModule.sol: can transfer any token from the

PegStabilityModule.sol contract and set the debt ceiling
○ DutchAuctionLiquidator.sol: can set the liquidation parameters

for a collateral type, set/update the default liquidation
parameters, liquidate a vault of the CDPModule.sol and can
update the BalanceSheet contract.

www.hacken.io
14

○ PSMLockup.sol: can update the BalanceSheet contract.
○ SimpleBSH.sol: can set the revenue share and can update the

BalanceSheet contract.
● Additional:

○ BridgeModule.sol:
■ mailbox - handles cross-chain transfers.

○ CDPModule.sol:
■ vault owner/altOwner - can borrow from a vault, can repay

to a vault and can add/remove collateral from a vault
○ SimpleBSH.sol:

■ balanceSheet - can call the method onAddSurplus()
○ LeverageProxy.sol:

■ flashMintModule - can call the method onFlashLoan()

Risks
● The system has a Coarse-grained Authorization Model. Most of the

functionality is accessible by any contract/EOAs from the allow list.
If any allowed list address is compromised this will lead to full
protocol control loss.

● The system is fully centralized. Addresses from the allow list have
ambiguous privileges.

● The system implements bridge functionality with help from the
Hyperlane protocol. It's an out of scope project and its stability
and safety can’t be guaranteed.

● Part of the protocol contracts are out of scope and their stability
and safety can’t be guaranteed.

www.hacken.io
15

Findings

Critical

C01. Coarse-grained Authorization Model

The main functionality is accessible by any contract/EOAs from the
YSS stablecoin allow list.

A project should have a fine-grained access control system if it has
multiple layers of auth-related functionality.

In case an address from the allow list is compromised it will put the
whole system at risk.

Path: ./src/*.sol

Recommendation: Implement an access control system with restricted
access for protocol contracts and functions.

Status: Mitigated (This is a design decision. The EOA deploying the
contracts will be removed from the allowlist.)

High

H01. Undocumented Behavior; Highly Permissive Role Access

YSSModuleExtended is inherited by CDPModule.sol,
DutchAuctionLiquidator.sol, PSMLockup.sol, SimpleBSH.sol. According
to the documentation “The Balance Sheet module is a contract which
keeps track of the protocol's deficit/surplus”. YSSModuleExtended.sol
implements a setter for the Balance Sheet module which will allow
whitelisted EOAs/contracts to change it at any time.

This behavior is not documented and can lead to incorrect counting of
protocol deficit/surplus.

Path: /src/modules/templates/YSSModuleExtended.sol :
setBalanceSheet()

Recommendation: remove the setter for the Balance Sheet module for
the mentioned contract or/and add public documentation with detailed
explanation why this is needed.

Status: Mitigated (This functionality has been implemented so that
the protocol can upgrade in the future.)

H02. Data Consistency

Decimals of the external stablecoin and YAMA of the
PegStabilityModule.sol contract are constructor parameters.

In the constructor of the BridgeModule.sol contract token decimals is
a constructor parameter.

www.hacken.io
16

This can lead to incorrect setup of the decimals and as a result to
invalid calculation of token conversion.

Path: /src/modules/PegStabilityModule.sol : constructor()

/src/modules/BridgeModule.sol : constructor()

Recommendation: set decimals by calling corresponding methods on
token contracts to avoid the possibility of an incorrect setup.

Status: Mitigated (This has been implemented to limit gas consumption
(an external call to decimals() would be needed each time), as it is
assumed decimals will not change.)

H03. Undocumented Behavior; Highly Permissive Role Access

The function transfer of the PegStabilityModule.sol and CDPModule.sol
contracts allows the whitelisted EOAs/contracts to transfer any token
from the contract to the chosen address including external
stablecoins deposited by users or collateral tokens.

This behavior is not documented and can lead to an inability to
withdraw deposited funds by the user.

Path: /src/modules/PegStabilityModule.sol : transfer()

/src/modules/CDPModule.sol : transfer()

Recommendation: remove the mentioned method or add a check that the
token to transfer is not one of the protocol tokens to cover cases
when an alien token was transferred directly to the contract by
mistake.

Status: Mitigated (This is used by DutchAuctionLiquidator and by
governance in case users’ funds are locked.)

H04. Undocumented Behavior; Highly Permissive Role Access

The Balance Sheet module is a contract which keeps track of the
protocol's deficit/surplus. The method setSurplus allows whitelisted
EOAs/contracts to specify the totalSurplus despite the actual state.

Additionally, the methods addSurplus and addDeficit can be called not
by intended contracts but by EOAs with allowlist privilege roles.

This functionality is undocumented.

Path: /src/modules/BalanceSheetModule.sol : setSurplus(),
addSurplus(), addDeficit()

Recommendation: remove the possibility of direct updates of the
totalSurplus.

Status: Mitigated (The EOA deploying the contracts will be removed
from the allowlist.)

www.hacken.io
17

H05. Undocumented Behavior; Highly Permissive Role Access

EOAs/contracts from the allow list have the possibility to change
initial Hyperlane parameters at any time.

This functionality is undocumented.

Path: /src/modules/BridgeModule.sol : setHyperlaneParameters()

Recommendation: remove the possibility to change initial hyperlane
parameters or/and add public documentation with detailed explanation
why this is needed.

Status: Mitigated (Contracts on the allowlist already require
root-level access and thus there is no security drawback from letting
them adjust the Hyperlane parameters.)

H06. Token Supply Manipulation; Highly permissive role

Addresses from allowlist can mint, burn and approve any amount of the
YSS stablecoin from/to any address.

Despite the fact that this functionality is used by the
BridgeModule.sol and FlashMintModule.sol contracts it can be
implemented with actual user allowance.

Path: /src/ModularToken.sol : mint(), burn(), approve()

Recommendation: implement an access control system with restricted
access for protocol contracts and functions and use actual user
allowance for BridgeModule.sol and FlashMintModule.sol.

Status: Mitigated (The EOA deploying the contracts will be removed
from the allowlist.)

H07. Non-Finalized Code; Undocumented Behavior

The ISwapper.sol interface is used in SimpleLiquidator.sol,
LeverageProxy.sol. Functions swapToYama, swapToCollateral are not
implemented.

The ICollateralManager.sol interface is used in CDPModule, their
functionality is not implemented. Functions handleCollateralDeposit,
handleCollateralWithdrawal are not implemented.

The function onAddDeficit of the SimpleBSH does not contain logic.

The code should not contain undocumented functionality.

Path: /src/periphery/SimpleBSH.sol : onAddDeficit()

/src/modules/CDPModule.sol : handleCollateralDeposit(),
handleCollateralWithdrawal()

/src/utility/LeverageProxy.sol : swapToYama(), swapToCollateral()

www.hacken.io
18

Recommendation: add documentation for mentioned functionalities and
finalize the code.

Status: Mitigated (At launch,
src/periphery/EmptyCollateralManager.sol will be used as the default
collateral manager. It will have no functionality, but in the future,
if governance desires to perform an action with deposited collateral
(such as staking it on another platform), the collateral manager
makes it possible to implement this functionality without replacing
CDPModule.sol)

Medium

M01. Inefficient Gas model - Redundant interactions

The ModularToken.sol contract in the constructor adds a contract
creator to the allowlist two times.

Path: ./src/ModularToken.sol : constructor()

Recommendation: remove redundant operations

Status: Mitigated (This is intentional. If the allowlist mapping is
not set before setAllowlist() is called by the constructor,
setAllowlist() will revert because msg.sender is not already on the
allowlist. And if the mapping is set manually instead of calling
setAllowlist(), the event will not be emitted.)

M02. Unchecked transfer or approve

The function does not use the SafeERC20 library to check the result
of ERC20 token transfers and approvals. Tokens may not follow the
ERC20 standard and return false in case of transfer failure or not
returning any value at all.

Path: /src/utility/LeverageProxy.sol : createVault(), onFlashLoan()

/src/periphery/PSMLockup.sol : lockup(), withdraw()

/src/periphery/DutchAuctionLiquidator.sol : claim()

/src/modules/PegStabilityModule.sol : transfer(), deposit(),
withdraw()

/src/modules/FlashMintModule.sol : flashLoan()

/src/modules/CDPModule.sol : addCollateral(), removeCollateral(),
transfer()

/src/modules/BridgeModule.sol : transferFromRemote()

Recommendation: use the SafeERC20 library to interact with tokens
safely.

Status: Fixed (Revised commit:
9091b8553ad4b81cd3281a1654afc0767a1a39f1)

www.hacken.io
19

M03. Inefficient Gas model - Redundant interactions

In the current implementation of the function deposit check, the
total balance of the PegStabilityModule contract not exceeding
debtCeiling is performed after external calls and calculation. Moving
it to the beginning can save Gas for users.

Path: /src/modules/PegStabilityModule.sol : deposit()

Recommendation: create local variable to calculate the expected
externalStablecoin balance on new deposits and move the require
statement before external calls and further calculations.
Additionally, in case the function transfer is disallowed for the
externalStablecoin implement the actual total deposited amount
storage variable to avoid risk of direct transfers to the contract
which can cause a Denial of Service of the deposit method and funds
lock.

Status: Mitigated (Checking the balance after the deposit is
intentional, so that the PSM can't cumulatively mint more than
debtCeiling amount of the stablecoin.)

M04. Inconsistent data - Variable is not limited

According to the documentation – “At launch, SimpleBSH is the handler
and it will transfer 90% of the revenue to the PSM lockup if the
protocol’s total surplus is not negative.”. Consider limiting the
revenueShare value in order to prevent a Denial of Service in case of
wrong setup.

Path: /src/periphery/SimpleBSH.sol : setRevenueShare()

Recommendation: provide conscious limits for stored configuration
values.

Status: Fixed (Revised commit:
9091b8553ad4b81cd3281a1654afc0767a1a39f1)

Low

L01. Floating Pragma

Locking the pragma helps ensure that contracts do not accidentally
get deployed using, for example, an outdated compiler version that
might introduce bugs that affect the contract system negatively.

Path: ./src/

Recommendation: consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment.

Status: Fixed (Revised commit:
9091b8553ad4b81cd3281a1654afc0767a1a39f1)

www.hacken.io
20

L02. Functions that can be declared external

“public” functions that are never called by the contract should be
declared “external” to save gas.

Path: /src/periphery/DutchAuctionLiquidator.sol :
getCollateralAmount(), getLastAuctionId()

/src/modules/CDPModule.sol : borrow(), repay(), addCollateral(),
removeCollateral(), setLiquidators(), setBorrowingDisabled(),
isLiquidated(), getAnnualInterest(), getPsInterest(),
getCollateralRatio(), getDebtFloor(), getDebtCeiling(),
getOwnedVaults(), getOwner(), getAltOwner(), getCollateralTypeId(),
getCollateralToken()

/src/modules/BridgeModule.sol : transferFromRemote(),
setHyperlaneParameters()

Recommendation: use the external attribute for functions never called
from the contract.

Status: Fixed (Revised commit:
9091b8553ad4b81cd3281a1654afc0767a1a39f1)

L03. State variables default visibility

The visibility of the variable target is not specified. Specifying
state variables visibility helps to catch incorrect assumptions about
who can access the variable.

This improves the contract`s code quality and readability.

Path: /src/periphery/SimpleBSH.sol

Recommendation: specify variables as public, internal, or private.
Explicitly define visibility for all state variables.

Status: Fixed (Revised commit:
9091b8553ad4b81cd3281a1654afc0767a1a39f1)

L04. State variables can be declared immutable

Compared to regular state variables, the gas costs of constant and
immutable variables are much lower. Immutable variables are evaluated
once at construction time and their value is copied to all the places
in the code where they are accessed.

Variables psm, psmToken are set in the constructor of the
PSMLockup.sol contract.

Variables flashMintModule, cdpModule are set in the constructor of
the LeverageProxy.sol contract.

The variable target is set in the constructor of the SimpleBSH.sol
contract.

www.hacken.io
21

The variable cdpModule is set in the constructor of the
DutchAuctionLiquidator.sol contract.

Variables externalStablecoin, yssDecimals, externalDecimals are set
in the constructor of the PegStabilityModule.sol contract.

Those variables can be declared immutable.

This will lower the Gas taxes.

Path: /src/periphery/PSMLockup.sol

/src/utility/LeverageProxy.sol

/src/periphery/SimpleBSH.sol

/src/periphery/DutchAuctionLiquidator.sol

/src/modules/PegStabilityModule.sol

Recommendation: declare mentioned variables as immutable.

Status: Fixed (Revised commit:
9091b8553ad4b81cd3281a1654afc0767a1a39f1)

L05. Unused modifier

The modifier onlyVaultOwner is declared, but never used.

This leaves redundant logic in code.

This will lower Gas taxes.

Path: /src/utility/LeverageProxy.sol : onlyVaultOwner()

Recommendation: remove redundant code.

Status: Fixed (Revised commit:
9091b8553ad4b81cd3281a1654afc0767a1a39f1)

L06. Missed internal/external imports

The LeverageProxy.sol contract inherits IERC3156FlashBorrower,
YSSModule but those imports are not present in the contract.

This will increase code readability.

Path: /src/utility/LeverageProxy.sol

Recommendation: add missing imports.

Status: Fixed (Revised commit:
9091b8553ad4b81cd3281a1654afc0767a1a39f1)

L07. Redundant variable conversion

The arguments of the addSurplus method call are of uint256 type and
converted to int256 before subtraction. This increases Gas cost.

www.hacken.io
22

Path: ./src/modules/CDPModule.sol:updateInterest()

Recommendation: Make conversion of variables over the result of the
subtraction.

Status: Mitigated (This is intentional so that it is possible for
governance to set negative interest)

L08. Style Guide Violation

The provided projects should follow the official guidelines.

Inside each contract, library or interface, use the following order:

1. Type declarations
2. State variables
3. Events
4. Modifiers
5. Functions

Functions should be grouped according to their visibility and
ordered:

1. constructor
2. receive function (if exists)
3. fallback function (if exists)
4. external
5. public
6. internal
7. private

Within a grouping, place the view and pure functions last.

It's best practice to cover all functions with NatSpec annotation and
to follow the Solidity naming convention. This will increase overall
code quality and readability.

Path: /src/ModularToken.sol

/src/utility/LeverageProxy.sol

/src/periphery/DutchAuctionLiquidator.sol

/src/modules/PegStabilityModule.sol

/src/modules/CDPModule.sol

/src/modules/BridgeModule.sol

Recommendation: follow the official Solidity guidelines.

Status: Fixed (Revised commit:
9091b8553ad4b81cd3281a1654afc0767a1a39f1)

www.hacken.io
23

https://docs.soliditylang.org/en/v0.8.17/style-guide.html

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
24

